

Content Overview with Page References

Quick access to topics in python

Topic

Introduction to Python — Features, uses, setup

Operations in Python — Arithmetic, comparison, logical operators
User Input & Type Conversion — input(), int(), float(), str()

Control Flow - if, elif, else

Loops — for, while, basic patterns

Strings — Basics, slicing, common string methods

Lists — Creating, indexing, aliasing & cloning, basic operations
Tuples — Creating, Indexing, Immutability, Basic Operations
Dictionaries — Creating, accessing, updating

Functions in Python — Defining functions, parameters, return values
Scope of Variables — Local vs Global

File Handling (Basic) — Reading/writing text files

Exception Handling (Basic) — try/except

Guido van Rossum
father of python

Introduction to Python

Python is a high-level, general-purpose programming language known
for its simplicity and readability. Created by Guido van Rossum in 1989
and released in 1991, Python has evolved through versions 1.0, 2.0, and 3.0,
each adding important features like functions, exception handling, list
comprehensions, and improved language consistency. Today, Python is
widely used in areas such as web development, data science, and
machine learning.

Its English-like syntax makes it easy to learn for beginners, while features
like dynamic typing, high-level data structures, and support for modules
and packages enable rapid application development and promote code
modularity and reuse. Python's readability and simplicity also help reduce
maintenance effort, making it a popular choice for developers of all levels.

~ ,,
&
¢-----------

i
i
i
i
I
v

Key Features of Python

Arithmetic Operators: Used to perform mathematical operations.

Addition (+) x =5;y = 3; print(x + y) # Output: 8
Subtraction (-) a =10; b = 4; print(a - b) # Output: 6
Multiplication (*) m =7; n = 6, print(m * n) # Output: 42
Division (/) p =15; g = 3; print(p / q) # Output: 5.0

Floor Division (//) r =17; s = 4; print(r // s) # Output: 4
Modulus (%) t =10; u = 3; print(t % u) # Output:

Exponentiation (**) v =2, w = 3; print(v * w) # Output: 8

Comparison Operators: Used to compare two values.

Equal to (==) x = 5;y = 3; print(x == y) # Output: False

Not equal to (=) a =10; b = 4, print(a != b) # Output: True

Greater than (>) m =7, n =6, print(m > n) # Output: True

Less than (<) p =15; g = 20; print(p < q) # Output: True

Greater than or equal to (>=) r =17; s =17, print(r >=s) # Output: True

Less than or equal to (<=) t =10; u =12; print(t <= u) # Output: True

Logical Operators: Used to combine
conditional statements, allowing more
complex conditions. Python has three
main logical operators:

Logical AND (and): Returns True if both conditions are
True; otherwise, False.

Logical OR (or): Returns True if at least one
condition is True; only False if both are False.

Logical NOT (not): Reverses the truth value of a
condition; True becomes False and vice versa.

Assignment Operators: Used to assign values to variables.

Assignment (=) x = 10; print(x) # Output: 10

Add and Assign (+=) y = 5;y += 3; print(y) # Output: 8

Subtract and Assign (-=) a =10; a -= 4, print(a) # Output: 6
Multiply and Assign (*=) m = 6; m *= 2; print(m) # Output: 12
Divide and Assign (/=) p = 20; p /= 4; print(p) # Output: 5.0
Modulus and Assign (%=) t =10; t %= 3; print(t) # Output:
Exponentiation and Assign (**=) v = 2; v **= 3; print(v) # Output: 8

Floor Division and Assign (/=) r =17; r //= 4; print(r) # Output: 4

Membership Operators: Used to test if a value
exists in a sequence (like lists, strings, or tuples).

in Operator: Returns True if the value exists in the sequence,
otherwise False.

numbers =1, 2, 3, 4, 5]
print(3 in numbers) # Output: True
print(6 in numbers) # Output: False

name = "aditya"
print("a" in name) # Output: True
print("b" in name) # Output: False

not in Operator: Returns True if the value does NOT exist in the
sequence, otherwise False

letters = "Hello"
print("z" not in letters) # Output: True
print("H" not in letters) # Output: False

fruits = ["banana", "cherry"]
print("orange" not in fruits) # Output: True
print("banana" not in fruits) # Output: False

Identity Operators: Used to check whether two
variables point to the same object in memory.

is Operator: Returns True if two variables refer to the same object

a=1[1,2,3]
b=a
print(a is b) # Output: True

c =11, 2, 3]
print(a is c) # Output: False

Is not Operator: Returns True if two variables refer to different objects

X ="hello"
y=X
print(x is noty) # Output: False

m = "world"
print(x is not m) # Output: True

id() Function: Returns the unique identity (memory address) of an
object. Useful to verify object identity.

a="70
print(id(a)) # Output: (some unigue memory address, varies by system)
Example: 140706552699200

User Input and Type Conversion

User Input:

Input() is used to get input from the user.

The value is always returned as a string, regardless of
what is entered.

a = input("Enter the value of a: ")
print("The entered value is:", a)

Type Conversion:

Changing one data type to another enables operations
between different types.

Common functions: int(), float(), str().

X =122092839
print(x, type(str(x))) # Convert integer to string

a=12.2092839
print(a, type(float(a))) # Ensure value is float

d =1220
print(d, type(int(d))) # Ensure value is integer

-------------------------------1

--------------------------------L

r

Understanding if Statements

Syntax: Executes a block of code if the condition is True.
Check numeric condition

a=15

ifa>10:
print("a is greater than 10")

Check string condition
word = "Python"

if word == "Python":
print("This is Python programming.")

Introduction to if-else Statement

Executes one block of code if a condition is True, and
another block if the condition is False.

Example: Loan approval based on credit score

a =720 # Customer's credit score
b =550 # Minimum required credit score

ifa > b:
print("Loan approved!")
else:
print("Loan denied. Your credit score is too low.")

Key Points:

e if block runs when the condition is True.

e else block runs when the condition is False.

e Proper indentation is mandatory to define blocks in Python.

Understanding if-elif-else Statements

Used to check multiple conditions one by one.

Executes the block for the first condition that is True, then
skips the rest.

If no condition is True, the else block (if provided) runs.

Example: Categorize a student based on marks
marks =75

If marks >= 90:
print("Grade: A+")
elif marks >= 60:
print("Grade: B")
else:
print("Grade: C")

Output:
Grade: B

Key Points:

e Only the first True condition executes its block.
e elif is optional; else is executed when all conditions are False.
e Indentation is mandatory for all blocks.

Introduction - Why Loops Are Used

Loops let you repeat tasks without rewriting the same code
Multiple times.

They make programs shorter, easier to read, and easier to
maintain, especially when you need to run the same set of
statements many times or process each item in a collection.

Syntax:

for iin range(start, end, step):
code to execute

e start » starting number (default is O)
e end » loop runs until end-1
e step » how much to increment each time (default is 1)

Introduction - Why Loops Are Used

Loops let you repeat tasks without rewriting the same code
Multiple times.

They make programs shorter, easier to read, and easier to
maintain, especially when you need to run the same set of
statements many times or process each item in a collection.

Syntax:

for iin range(start, end, step):
code to execute

e start » starting number (default is O)
e end » loop runs until end-1
e step » how much to increment each time (default is 1)

Exploring Python Iteration with while Loops

If you want to execute code repeatedly until a specific
condition is met, use a while loop.

It is useful when you don't know in advance how many
times the code needs to run or when the condition can
change during execution.

The loop keeps running while the condition is True and
stops once it becomes False.

Syntax:

while condition:
code to execute
increment/decrement to avoid infinite loop

Python Iteration with for Loops

If you want to run a block of code for each item in a
sequence or for a fixed number of times, use a for loop.

It is ideal when the number of iterations is known or when
you need to iterate over elements of a collection (like a list,
string, or range).

The loop automatically takes the next item in the sequence
on each iteration until all items are processed.

Transfer Statements in Python

Transfer statements are used to alter the normal flow of a
program inside loops or conditional blocks.

They give you control over when to stop, skip, or temporarily
do nothing in a block of code.

Types of Transfer Statements:
break — Stops the loop immediately and exits.
continue - SKips the current iteration and goes to the next.

pass — Does nothing; acts as a placeholder when a
statement is required.

Centered Pyramid Pattern of Stars

A pyramid of stars, starting with one star at the top and
iIncreasing by one star per row, all centrally aligned.

EEXEEERXX

AXXXKXXXX

AN EEEAETETER

. .
ol B a T B~ T ™
‘ I)

L — - S G N - ——

What is a String?

A string is a sequence of characters used to store text in
Python. Strings are immutable, meaning their content
cannot be changed after creation.

Creating Strings in Python

trings can be created using single quotes ('..'), double
quotes (".."), or triple quotes (".."" or ""."") for multi-line
strings. Examples:

Accessing Characters in a String

In Python, a string is a sequence of characters, and you can
access each character individually using indexing or a
portion of the string using slicing.

Indexing lets you pick characters based on their position:
Positive Indexing: Counts from the start, beginning with O.

Negative Indexing: Counts from the end, starting with -1.

Slicing allows you to get a part of the string by specifying a
start and end index;

String Operations

Strings in Python support several basic operations to

greeting = "Hello " "World" manipulate, combine, and extract information. These
print (greeting) . OQutput: Hello Worlc

operations allow you to work efficiently with text, making it
easy to create, modify, or analyze string data. Python
provides simple syntax for concatenation, repetition,
indexing, slicing, and other manipulations.

Concatenation (+): Combines two or more strings.
Repetition (*): Repeats a string multiple times.

Indexing: Access individual characters using positions.

Slicing: Extract a substring using [start:end].

print (text.lower())

#.strip() - Removes

text = "

pri:t(text.étrip())

text ="

print (t@:t . ?[:llt 0)

#.replace() - Replaces a specific

text = "

print (text.replace ("

Useful String Methods

Python has useful string methods to make text handling
easier. .upper() converts text to uppercase, .lower() to
lowercase, .strip() removes extra spaces, .split() breaks a
string into a list, and .replace() substitutes parts of a string.
These methods help clean, format, and process text
efficiently.

.upper() » Changes all characters in the string to uppercase.
Jlower() » Converts all characters to lowercase.

strip() » Removes any spaces at the beginning or end of a string.
split() » Divides a string into a list of words or substrings.

replace() » Replaces a specific substring with another.

f-strings / Formatting

f-strings, introduced in Python 3.6, allow you to embed
variables and expressions directly inside strings. This makes
it easier to create readable and dynamic text without using
complicated concatenation or formatting methods.

my list =
print (my list)

numbers = [1, 2,

print (numbers)

fruits[l] = " :
print (fruits) # Output:

(=% =

my list = [10, '
print (my list)

my list[O0]
print (my list)

Introduction to Python Lists

A list in Python is an ordered collection of items, which can
store elements of different data types, such as numbers,
strings, or even other lists. Lists are mutable, meaning you
can modify, add, or remove elements after creation.

Key Features of Python Lists
Ordered: Elements maintain the order in which they are added.
Mutable: Items can be modified using indexing.
Heterogeneous: Can contain elements of different types.
Dynamic: Size can increase or decrease at runtime.

Supports Nesting: A list can contain another list as an element.

Essential List Functions in Python

Python provides several built-in functions and methods to make
working with lists easier. These functions help you add, remove, find,
and count elements, as well as manipulate the list efficiently.

Common List Functions:

append() - Adds an element at the end of the list.
insert() - Adds an element at a specific index.
remove() — Removes the first occurrence of a value.

pop() — Removes and returns an element at a given index (default is
the last).

iIndex() — Returns the index of the first occurrence of a value.
count() — Returns how many times a specific value appears in the list.

sort() — Sorts the list in ascending order.Returns how many times a
specific value appears in the list.

reverse() — Reverses the order of elements.

len() — Returns the total number of elements in a list.

fruits = ["appl
orint (fruits[0])
print (fruits([2])

original = [1, 2,
alias = original
alias[0] = 100
print (original)

Output:

¥lO Credtie a Separadate Copy

original = [1, 2,

clone = original.
clone[0] = 100
print (original)
print (clone)

Indexing and Accessing Elements

Lists in Python are ordered sequences, which means each element
has a unique position called an index. You can access elements using
positive or negative indexin

Positive Indexing starts at O for the first element:

Negative Indexing starts from the end, with -1 representing the last element:

Aliasing and Cloning Lists

Python lists are mutable, which means their contents can be
changed. When you assign a list to another variable using =, both
variables point to the same list. This is called aliasing.

listl = [1, 2]
list2 = [3, 4]
combined = listl + list2

Basic List Operations

Python supports several basic operations on lists:
Concatenation (+) - Combine two lists:

Repetition (*) — Repeat list elements multiple times:

friies = [SSpple™, Membership Testing (in, not in) — Check if an element exists:

print ("apple"” fruits)
print ("orange"” fruits)

- | r

Iterating Through Lists

m}

LT+ AAvy=+ T vy gl i
Fileratvindg Inroudn :13L3

numbers = [1, 2, 3, 4, 5 You can use for loops to go through each element in a list,

num numbers:

seint (mm * 2) performing operations on them one by one without manually

accessing each index.

Nested Lists

Python allows lists to contain other lists, called nested lists. You can
access elements inside these inner lists using multiple indices, which
is useful for handling multi-dimensional data.

= S = S SE

numbers = (10, 20,
print (numbers[1l])
print (numbers[-1])
print (numbers[1:3])

30

Introduction to Tuples

Tuples are ordered collections of elements, similar to lists, but
immutable, meaning their contents cannot be changed once
created. They are useful when you want a sequence of items that
should remain constant throughout a program.

e Tuples can be created in different ways:

Accessing Tuple Elements

Indexing: Use positive or negative indices to get a single element.

Slicing: Extract a subset of the tuple using [start:end].

Tuple Operations

Concatenation (+): Combine two tuples.

Repetition (*): Repeat a tuple multiple times.

Membership testing (in, not in): Check if an element exists in a tuple.

Tuple Functions / Methods

len() - returns

print (len (numbers)) Tuples have a few built-in functions that help you work with their data:

count () - counts occurrences of &
print (numbers.count (20))

len() » Returns the total number of elements in the tuple.

ndex () - returns first

print (numbers.index(30)) # Output:

count(value) » Returns the number of times a specific value appears.

index(value) » Returns the index of the first occurrence of a value.
Immutability of Tuples

: Tuples are immutable, meaning once created, their elements cannot be

B e Al A e Bt W sk T R changed, added, or removed. This is different from lists and ensures that
Print . tapleldl) o SRkpme; “ the data remains constant. Immutability makes tuples safer and faster
o ety for storing fixed data, such as coordinates or configuration settings.

new_tuple my tuple + (4
print (new_tuple) # Output:

¥ we

Nested tuples

Nested tuples are tuples that contain other tuples as
elements. You can access elements in a nested tuple by
using multiple indices: the first index selects the inner
tuple, and the second index selects the element within it.
This allows structured data to be stored and accessed
efficiently.

Introduction to Dictionaries

~int (student)

 p—
1 4

A dictionary in Python is a collection of key-value pairs,

where each key is unique. Dictionaries are unordered,

S P Sl meaning the items are not stored in any particular

i mtput: O sequence. They are mutable, allowing you to add, modify,

or remove elements. Dictionaries are ideal for storing

structured data, such as student records, product details,
or configuration settings.

Creating Dictionaries

print (students) You can create dictionaries using curly braces { } or the
dict() function. They can store empty dictionaries,
single/multiple elements, or even nested dictionaries.

e - s

H= = S

Accessing and Updating Elements

Values in a dictionary can be accessed using their keys.
You can also add new key-value pairs or update existing
values.

Dictionary Methods

Python dictionaries provide built-in functions to simplify
tasks such as retrieving keys, values, or items, and
adding/removing elements.

Iterating Through Dictionaries

You can loop through keys, values, or key-value pairs
using a for loop. This is useful when you want to process
or display dictionary data.

Nested Dictionaries

Dictionaries can contain other dictionaries, allowing you
to model hierarchical data. Access nested values using
multiple keys.

Functions in Python

Functions are reusable blocks of code that perform a
specific task. They help make programs modular, easier
to read, and reduce repetition.

Defining Functions
You can define a function using the def keyword followed
by the function nhame and parentheses. The code inside

I,iw— El'?iame':” Suest”) : the function is indented.

Function Parameters

Functions can accept parameters to pass information.
There are different types:

Positional Parameters — Values are passed in order.

multiply(a, b): . : .
print ("Product:", a * b) Default Parameters — Provide a default value if none is passed.

multiply
ut:Product: 12

(b=4, a=3) Keyword Parameters — Pass values using parameter names.

#Output

Return Values

#Return Values
T —_ Functions can return a value using the return keyword. This
num ** 2 allows you to use the result elsewhere in your program.

result = square (5)
print ("Square:", result)

Scope of Variables in Python

In Python, a variable's scope determines where it can be
accessed in a program. Local variables are defined inside
my func () : a function and are only accessible within that function,
y =5 # Local variable ensuring they don't interfere with other parts of the
ii:: E e £t . program. Global variables, on the other hand, are defined

outside functions and can be accessed anywhere in the
program, allowing shared data across multiple functions.

my func()
print (" -side function, x: X) . .
print(y) # This would cause an y is not defined Understanding variable scope helps prevent unexpected

errors and keeps code organized.

Local Variables: Defined inside a function, accessible only
within it.

Global Variables: Defined outside all functions, accessible
anywhere in the program.

file.write ("
file.close()

File Handling in Python

Python allows you to read from and write to files using
built-in functions. You can open a file in different

e 'r' > Read (default)

e 'W' > Write (creates or overwrites a file)
e 'a'> Append (add content to the end)
e 'r+' > Read and write

Writing to a file
with open("example.txt", "w") as f:
f.write("Hello, Python!")

Note: You can use a text editor or Python’s IDLE to create
your own .txt files and practice reading/writing using
these modes.

Exception Handling in Python

Python allows you to handle runtime errors using try and
except blocks. This prevents the program from crashing
and lets you provide a response or fallback action when
an error occurs.

amount = float (input ("Ent th nt 1 2) 1)
card number = input ("Ent] '

len (card_number) != 4 card number.isdigit():

Thank You!

We hope you found these notes helpful and easy to follow for building your
Python foundations and learning effectively.

